

CA/04/V Charge Amplifier Velocity Converter 04 system

Transducer interface converts; acceleration to velocity input range 1/100pC/g; O/Ps 100mV/g and 1V/mm.sec. (max)

1/100pC/g normalizing charge amplifier input section proceeds noise limiting 10Hz 4 pole high pass filter and single integrator. Integrator converts periodic acceleration above the filter corner frequency to velocity. Integrator gain is controlled over 50dB dynamic range by 6 position switch.

CHARGE AMPLIFIER

Provides wideband 100mV/g acceleration proportional output when normalized, transducer sensitivity range 1/100pC/g, by means of ten-turn dial and x1, x10 multiplier. Output is independent of transducer lead

capacitance. CAL input terminal allows injection of test signal, $1mV \equiv 1pC$.

HIGH PASS FILTER

Noise level alter integration, hence the realizable signal threshold, is proportional to fmin -n, where fmin is the high pass filter corner frequency and n is a function of the noise type, being 1/2 for that predominating in FET input stage charge amplifiers at low frequencies (<100Hz). Spurious signals also emanate from the transducer and its cable resultant upon environmental factors, and these may be considered as introducing additional f-n noise components, subject to high pass filter constraint. HP filter corner frequency is thus the determinant of threshold velocity level.

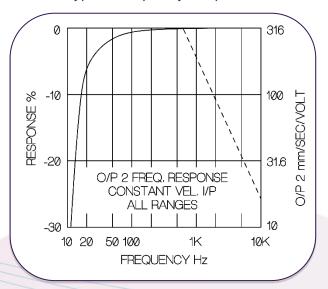
INTEGRATOR / RANGE AMPLIFIER

Converts acceleration input to velocity output levels of 1-316mm/sec/volt in six 10dB increments. Integrator bandwidth is controlled by the HP filter integrator frequency response constraints and ultimately background noise. Peak limiting input of around 120g pk. Equates to a velocity-frequency product (v x f) of 2 x 105mm/sec2 thus absolute constraints may be readily calculated.

APPLICATIONS

Confined to quasi steady state inputs as emanating from vibration on rotating plant, where vibration velocity is a more representative wide band signal than either acceleration (high frequency biased) or displacement (low frequency biased), allows retro-fit of piezoelectric accelerometers for velocity transducers. Integration of transient signals, i.e. to convert to velocity change, is invalid.

DJB Instruments (UK) Ltd


Mildenhall, Suffolk IP28 7BG

Finchley Avenue,

Tel+44 (0)1638 712 288Emailsales@djbinstruments.comWebwww.djbinstruments.com

SCHEMATIC O/P 1 100mV/g O/P 1 100mV/g O/P 1 100mV/g O/P 1 100m/sec CHARGE I/P CAL 1000pF

Figure 1

Typical Frequency Response

DJB Iss.1

A UK company with UK-based manufacturing, assembly and calibration in-house.

CA/04/V Charge Amplifier Velocity Converter 04 system

Transducer interface converts; acceleration to velocity input range 1/100pC/g; O/Ps 100mV/g and 1V/mm.sec. (max)

	Metric	Imperial
Input	Single ended	
Max input charge	12 nC	
Input capacitance loading	10nF =1% gain reduction	10nF =1% gain reduction
Normalising range	1/100pC/(m/s ²)	1/100pC/g
Noise level @ 1pC/g, mm/sec. Rms scaling	0.05mm/sec+ 0.05mm/sec/1nF input capacitance	0.02in/sec+ 0.02in/sec/1nF input capacitance
Outputs 1 & 2 • O/P1 • O/P2 vel, Switch selectable 10dB mm/sec/V	Single ended 100±2% @500Hz, 3dB bandwidth, 1Hz/100kHzmV(m/s²), 1,3.16,10,31.6,100,316±3%@ 500kHz,5% bandwidth 20Hz/10kHz	
Peak O/P volts @ Vs = ±15V	±12V, O/P's 1 & 2	
Supply voltage Vs, V	±10/15	
Supply current, mA	±15	

DJB Instruments (UK) Ltd Finchley Avenue, Mildenhall, Suffolk IP28 7BG Tel Email Web

+44 (0)1638 712 288 ail sales@djbinstruments.com www.djbinstruments.com

DJB Iss. 1

A UK company with UK-based manufacturing, assembly and calibration in-house.